US009305012B2

a2 United States Patent 10) Patent No.: US 9,305,012 B2
Bernbo et al. 45) Date of Patent: *Apr. 5, 2016
(54) METHOD FOR DATA MAINTENANCE (56) References Cited
(71) Applicant: COMPUVERDE AB, Karlskrona (SE) U.S. PATENT DOCUMENTS
. . 3,707,707 A 12/1972 Spencer et al.

(72) Inventors: Stef‘fm.Bernbo, Karlskrona (SE); . 5787247 A 711998 Nogin ot al.

Christian Melander, Rodeby (SE); 6.003.065 A 12/1999 Yan of al.

Rodger Persson, Karlskrona (SE); 6,021,118 A 2/2000 Houck et al.

Gustav Petersson, Sturko (SE) 6,055,543 A 4/2000 Christensen et al.

(Continued)

(73) Assignee: COMPUVERDE AB (SE)

(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS

patent is extended or adjusted under 35 CN 1726454 A 1/2006
U.S.C. 154(b) by 0 days. EP 0774723 A3 7/1998
This patent is subject to a terminal dis- (Continued)
claimer.

OTHER PUBLICATIONS

(21) Appl. No.: 14/098,021
Stephen, Multicast Routing in Datagram Internetworks and

(22) Filed: Dec. 5,2013 Extended L.ANs, 1990.*

Continued
(65) Prior Publication Data ¢)

US 2014/0095559 Al Apr. 3,2014
Primary Examiner — Lechi Truong

Related U.S. Application Data (74) Attorney, Agent, or Firm — Condo Roccia Koptiw LLP

(63) Continuation of application No. 13/224.415, filed on
Sep. 2, 2011, now Pat. No. 8,645,978.

57 ABSTRACT
(51) Imt.ClL
GO6F 3/00 (2006.01) A method for data storage implemented in a data storage
GOG6F 17/30 (2006.01) system is disclosed. Data storage nodes may be intercon-
GO6F 9/54 (2006.01) nected by means of a communications network. The method
HO4L 12724 (2006.01) may include sending a request for a first data item to a plu-
(52) US.CL rality of storage nodes. The first data item may include a
CPC GOG6F 17/30194 (2013.01); GOGF 9/54 reference to a second data item stored in the storage system.

(2013.01); GO6F 17/30206 (2013.01); GO6F The method may include receiving the first data item from at
17/30212 (2013.01); HO4L 41/0213 (2013.01) least one storage node, and sending a request for the second

(58) Field of Classification Search data item to the plurality of storage nodes based on the refer-
CPCcccue. GOG6F 9/45; GOG6F 17/30; GOGF 9/54; ence included in the first data item.
HO04L 41/2013
USPC oo 719/310, 318; 709/223
See application file for complete search history. 18 Claims, 9 Drawing Sheets
19a 20a 19b 20b
(\ — ([=
22a/
22/
21a 20d 19¢ 2/00
[\ .y - (\ “

Identifler for data flle 21a

(
\.

226/

US 9,305,012 B2

Page 2
(56) References Cited 2005/0256894 A1 11/2005 Talanis et al.
2005/0278552 Al 12/2005 Delisle et al.
U.S. PATENT DOCUMENTS 2005/0283649 Al 12/2005 Turner et al.
2006/0031230 Al 2/2006 Kumar
6,389,432 Bl 5/2002 Pothapragada et al. 2006/0031439 Al 2/2006 Saffre
6,470,420 Bl 10/2002 Hospodor 2006/0080574 Al 4/2006 Saito et al.
6,782,389 Bl 8/2004 Chrin et al. 2006/0090045 Al 4/2006 Bartlett et al.
6,925,737 B2 8/2005 Bolduan et al. 2006/0090095 Al 4/2006 Massa et al.
6,985,956 B2 1/2006 Luke et al. 2006/0112154 Al 5/2006 Douceur et al.
7,039,661 Bl 5/2006 Ranade et al. 2006/0218203 Al 9/2006 Yamato et al.
7,200,664 B2 4/2007 Hayden 2007/0022087 Al 1/2007 Babhar et al.
7,206,836 B2 4/2007 Dinker et al. 2007/0022121 Al 1/2007 Babhar et al.
7,266,556 Bl 9/2007 Coates 2007/0022122 Al 1/2007 Babhar et al.
7,320,088 Bl 1/2008 Gawali et al. 2007/0022129 Al 1/2007 Babhar et al.
7,340,510 Bl 3/2008 Liskov et al. 2007/0055703 Al 3/2007 Zimranetal. ... 707/200
7,352,765 B2 4/2008 Dai et al. 2007/0088703 Al 4/2007 Kasiolas et al.
7,406,484 Bl 7/2008 Srinivasan et al. 2007/0094269 Al 4/2007 Mikesell et al.
7,487,305 B2 2/2009 Hill et al. 2007/0094354 Al 4/2007 Soltis
7,503,052 B2 3/2009 Castro et al. 2007/0189153 Al 8/2007 Mason
7,546,486 B2 6/2009 Slik et al. 2007/0198467 Al 8/2007 Wiser et al.
7,568,060 B2 7/2009 Jantz et al. 2007/0220320 Al 9/2007 Sen et al.
7,574,488 B2 8/2009 Matsubara 2007/0276838 Al 11/2007 Abushanab et al.
7,590,672 B2 9/2009 Slik et al. 2007/0288494 Al 12/2007 Chrin et al.
7,593,966 B2 0/2009 Therrien et al. 2007/0288533 Al 12/2007 Srivastava et al.
7,624,155 Bl 11/2009 Nordin et al. 2007/0288638 Al 12/2007 Vuong et al.
7,624,158 B2 11/2009 Slik et al. 2008/0005199 Al 1/2008 Chen et al.
7,631,023 Bl 12/2009 Kaiser et al. 2008/0043634 Al 2/2008 Wang et al.
7,631,045 B2 12/2009 Boerries et al. 2008/0077635 Al 3/2008 Sporny etal.
7,631,313 B2 12/2009 Mayhew et al. 2008/0104218 Al 5/2008 Liang et al.
7,634,453 Bl 12/2009 Bakke etal. 2008/0109830 Al 5/2008 Giotzbach et al.
7,647,329 Bl 1/2010 Fischman et al. 2008/0168157 Al 7/2008 Marchand
7,694,086 Bl 4/2010 Kulkarni et al. 2008/0171556 Al 7/2008 Carter
7,769,711 B2 8/2010 Srinivasan et al. 2008/0172478 Al 7/2008 Kiyohara et al.
7,778,972 Bl 8/2010 Cormie et al. 2008/0198752 Al 8/2008 Fan et al.
7,822,766 B2 10/2010 Arndt et al. 2008/0235321 Al 9/2008 Matsuo
7,840,992 Bl 11/2010 Duftene et al. 2008/0244674 Al 10/2008 Hayashi et al.
7,873,650 Bl 1/2011 Chapman et al. 2008/0270822 Al 10/2008 Fan et al.
7,885,982 B2 2/2011 Wight et al. 2009/0043922 Al 2/2009 Crowther
8,060,598 B1 11/2011 Cook et al. 2009/0083810 Al 3/2009 Hattori et al.
8,073,881 Bl 12/2011 Georgiev 2009/0132543 Al 5/2009 Chatley et al.
8,190,561 Bl 5/2012 Poole et al. 2009/0172211 Al 7/2009 Perry et al.
8,255,430 B2 8/2012 Dutton et al. 2009/0172307 Al 7/2009 Perry et al.
8,296,398 B2* 10/2012 Lacapraetal. ... 709/219 2009/0228669 Al 9/2009 Slesarev et al.
8,401,997 Bl 3/2013 Tawri et al. 2009/0271412 Al 10/2009 Lacapra et al.
8,417,828 B2 4/2013 Ma et al. 2009/0287842 Al 11/2009 Plamondon
8,443,062 B2 5/2013 Voutilainen et al. 2010/0115078 Al 5/2010 Ishikawa et al.
8,561,115 B2 10/2013 Hattori et al. 2010/0161138 Al 6/2010 Lange et al.
8,577,957 B2 11/2013 Behar et al. 2010/0169391 Al 7/2010 Baptist et al.
8,707,001 B2* 4/2014 Gladwinetal. 714/6.24 2010/0169415 Al 7/2010 Leggette et al.
2001/0034812 A1 10/2001 Ignatius et al. 2010/0185693 Al 7/2010 Murty et al.
2001/0047400 Al 11/2001 Coates et al. 2010/0198888 Al 8/2010 Blomstedt et al.
2002/0042693 Al 4/2002 Kampe et al. 2010/0198889 Al 8/2010 Byers et al.
2002/0073086 Al 6/2002 Thompson et al. 2010/0223262 Al 9/2010 Krylov etal.
2002/0103888 Al 8/2002 Janz et al. 2010/0303071 Al 12/2010 Kotalwar et al.
2002/0114341 Al 82002 Sutherland et al. 2011/0055353 Al 3/2011 Tucker et al.
2002/0145786 Al 10/2002 Chang et al. 2011/0072206 Al 3/2011 Rossetal.
2003/0026254 Al 2/2003 Sim 2011/0125814 Al 5/2011 Slik et al.
2003/0120654 Al 6/2003 Edlund et al. 2011/0252204 Al 1022011 Coon et al.
2003/0126122 Al 7/2003 Bosley et al. 2012/0180070 Al 7/2012 Pafumietal. 719/313
2003/0154238 A1 8/2003 Murphy et al. 2012/0331021 Al 12/2012 Lord
2003/0172089 Al 9/2003 Douceur et al. 2013/0060884 Al 3/2013 Bernbo et al.
2003/0177261 Al 9/2003 Sekiguchi et al. 2013/0103851 Al 4/2013 Umeki et al.
2004/0059805 Al 3/2004 Dinker et al. 2013/0254314 Al 9/2013 Chow et al.
2004/0064729 Al 4/2004 Yellepeddy
2004/0078466 Al 4/2004 Coates et al. FOREIGN PATENT DOCUMENTS
2004/0088297 Al 5/2004 Coates et al.
2004/0111730 Al 6/2004 Apte
2004/0243675 Al 12/2004 Taoyama et al. Eg ?231‘?25 i; ggggg
2004/0260775 Al 12/2004 Fedele EP 1578088 A2 9/2005
2005/0010618 Al 1/2005 Hayden EP 1669850 Al 6/2006
2005/0015431 Al 1/2005 Cherkasova EP 1798934 Al 6/2007
2005/0015461 Al 1/2005 Richard et al. EP 2031513 A2 3/2009
2005/0038990 Al 2/2005 Sasakura et al. P 6-348527 A 12/1994
2005/0044092 Al 2/2005 Adya et al. TP 11-249874 A 9/1999
2005/0055418 Al 3/2005 Blanc et al. 1P 2000-322292 A 11/2000
2005/0177550 Al 8/2005 Jacobs et al. JP 2003-030012 A 1/2003
2005/0193245 Al 9/2005 Hayden et al. P 2003-223286 A 8/2003
2005/0204042 Al 9/2005 Banerjee et al. JP 2003-248607 A 9/2003
2005/0246393 Al 11/2005 Coates et al. P 2003-271316 A 9/2003

US 9,305,012 B2
Page 3

(56) References Cited
FOREIGN PATENT DOCUMENTS

JP 2004-005491 A 1/2004
JP 2007-058275 A 3/2007
JP 2008-250767 A 10/2008
JP 2009-259007 A 11/2009
WO WO 99/38093 Al 7/1999
WO WO 01/18633 Al 3/2001
WO WO 02/35359 A2 5/2002
WO WO 02/44835 A2 6/2002
WO WO 2004/053677 A2 6/2004
WO WO 2006/124911 A2 11/2006
WO WO 2007/014296 A2 2/2007
WO WO 2007/115317 A2 10/2007
WO WO 2007/134918 A1 11/2007
WO WO 2008/069811 Al 6/2008
WO WO 2008/102195 Al 8/2008
WO WO 2009/048726 Al 4/2009
WO WO 2010/046393 A2 4/2010
WO WO 2010/080533 A2 7/2010
WO WO 2011/131717 A1 10/2011
OTHER PUBLICATIONS

Wikipedia, “FastTrack”, Available online at: http://de.wikipedia.org/
w/index php?title=FastTrack&01did=83614953, Jan. 8, 2011, pp.
1-2.

Wikipedia, “Load Balancing (Computing)”, Available online at
http://en.wikipedia.org/w/index.php?title=Load_ balancing_ %
28computing%29&01did=446655159, Aug. 25, 2011, pp. 1-7.
SAP Library, “Queues for Prioritized Message Processing”, SAP
Exchange Infrastructure, Available online at http:/help.sap.com/
saphelp__nw04/helpdata/en/04/
827440¢36ed562¢10000000a155106/content .htm, Feb. 6, 2009, pp.
1-2.

Squid-Cache.Org, “Squid Configuration Directive Reply_Body
Max__Size”, Available online at < squid-cache.org/Doc/config/re-
ply_body__max_ size/>, Dec. 21, 2008, pp. 1-2.

Trustwave, “How Do I Block Large Files by Content Size Before
Download?”, Available online at < trustwave.com/support/kb/article.
aspx?id=13166>, Mar. 23, 2009, pp. 1-2.

Hewlett-Packard Development Company L. P., “HP Volume Shad-
owing for OpenVMS”, OpenVMS Alpha 7.3-2, Sep. 2003, 162
pages.

Kronenberg et al., “VAXclusters: A Closely-Coupled Distributed
System”, ACM Transactions on Computer Systems, vol. 4, No. 2,
May 1986, pp. 130-146.

Parris, Keith, “Using OpenVMS Clusters for Disaster Tolerance”,
System/Software Engineer, HP Services—Systems Engineering,
2003, 27 pages.

Tang et al., “An Efficient Data Location Protocol for Self-Organizing
Storage Clusters”, Supercomputing, ACM/IEEE Conference, Phoe-
nix, AZ, USA, Nov. 15-21, 2003, 13 pages.

Weatherspoon et al., “Antiquity: Exploiting a Secure Log for Wide-
Area Distributed Storage”, Proceedings of the EuroSys Conference,
ACM 2007, Lisbon, Portugal, Mar. 21-23, 2007, pp. 371-384.
Zhang et al., “Brushwood: Distributed Trees in Peer-to-Peer Sys-
tems”, Peer-to-Peer Systems IV Lecture Notes in Computer Science
vol. 3640, 2005, pp. 47-57.

Katsurashima et al., “NAS Switch: a Novel CIFS Server Virtualiza-
tion”, Proceedings. 20th IEEE/1 1th NASA Goddard Conference on
Mass Storage Systems and Technologies, Apr. 7-10, 2003, pp. 82-86.
Suryanarayanan et al., “Performance Evaluation of New Methods of
Automatic Redirection for Load Balancing of Apache Servers Dis-
tributed in the Internet”, Proceedings. 25th Annual IEEE Conference
on Local Computer Networks, Nov. 8-10, 2000, pp. 644-651.

* cited by examiner

U.S. Patent Apr. 5, 2016 Sheet 1 of 9 US 9,305,012 B2

{Application 1 ' Application 2\

Storage Storage
i node |} node |i
APl |} API
\ J(}(
11 11
(

Storage node
)

19 Storage

t\ Collection
object

Storage
node
API

21 Data files

\,/;_/

177\

US 9,305,012 B2

U.S. Patent Apr. 5, 2016 Sheet 2 of 9
19a 20a 19b 20b
/ / /
<\ <‘ ((
T = a e = “
Collection Collection object Collection Collection object
object identifier |_> object identifier
P 1 Identifier for collection object 19b |— Identifier for collection object |
22a”
| Identifier for collection object | /i Identifier for collection object 19¢ I
/
22
| Identifier for data file | Identifier for data file
\. J/ J
21a 20d 19¢ 20c
/ / /
(((<
i > N\ Ty T ™)
ey . Collection Collection object
Data fil f
ata file Data file identifier | lp——y object oall—
Identifier for collection object |
Data | Identifier for collection object ‘
Il Identifier for data file 21a ‘
//
\. J/ J
22¢”

Fig 2

U.S. Patent Apr. 5, 2016 Sheet 3 of 9 US 9,305,012 B2

30 33

w

))Y
Identifier element 1 Identifier element 2 d

o\ es

=

31\
32\ A Cluster ID Data item 1D /7

N

\ Multicast address 128 bit unique number /]

Example: 224.10.20.30:25892e17-80f6-415f-9c65-7395632f0223

Fig 3

U.S. Patent Apr. 5, 2016 Sheet 4 of 9 US 9,305,012 B2

40
Receive root key in application server 7

41
Multicast request for data item v

A 4

42
Scan storage medium T
A
43
Reply from storage nodes 7
A
Retrieve data item from e 44

selected storage node

A

Iterpret content of data item _/ 45
and retrieve new key

46
End

Fig 4

US 9,305,012 B2

Sheet 5 of 9

Apr. 5, 2016

U.S. Patent

",
f.~
ﬁ,
N ,
* 5
S, EY) o
..a. «f - v
%, 5, : nld
5 5 % s s
f «.w Y ; \
% 4 5
M~ Y, Y k? ;
Ny ;
Ay K
»\a.. f.u. vwﬂ
..w .f ““
3 ;

.
B N pm R A AR =

o T
A 7 p m
FAN / /
\«. A H

P \ _._“.\\\,,.‘_ \\\ \

Yitho gat s

A

15¢

v 74
J@%

15b

h.

ksg

8.1

15a

15e

Fig 5a

U.S. Patent Apr. 5, 2016 Sheet 6 of 9 US 9,305,012 B2

Hosts: N
*“162.188.1.2 }
182.168.1.4
182.168.1.5 \\

Vergiom: 7 RN

Load: 168% | S

i Hosts:
P 19218812
S 19218514
S MiB2ests
A 271 Versiom 7
A Load 34%
g y

102.168.1.1 192.168.1.2 102.168.1.3 102.168.1.4 192.168.1 5
15a 15b 15¢ 15d 15e

Fig 5b

U.S. Patent Apr. 5, 2016 Sheet 7 of 9 US 9,305,012 B2

fUnicast]

ReadFile AN
| ZBOB4AYT-TEES-420E- N
A21ABD7II2007927

1
]

i Data: ‘

4 11000108 07050804 C505C104
S G007CHC2 DYEAEZCS DOTO0I00 |
< C2DADACT COUTI002 00010007

192.188.1.1 192.188.1 2 182.168.1.3 182.168.1.4 182.168.1.5
15a 15b 15¢ 15d 15e

Fig 5¢

U.S. Patent Apr. 5, 2016 Sheet 8 of 9 US 9,305,012 B2

60
Receive root key in application server v

A

61
Resolve path v

A 4

62
Multicast request to store data item |

A

63
Scan storage medium T
A
64
Reply from storage nodes e
A
Send data item to | 65

selected storage nodes

'

Update storage node

|66

End

Fig 6

U.S. Patent Apr. 5, 2016 Sheet 9 of 9 US 9,305,012 B2

70
Receive root key in application server e

Resolve path e 71

y

72
Multicast query regarding data item |

A

73
Scan storage medium e
y
74
Reply from storage nodes T
75
Unicast delete file command "
Y
76
Update storage node e
v
End

Fig7

US 9,305,012 B2

1
METHOD FOR DATA MAINTENANCE

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/224,415, filed Sep. 2, 2011, which issued as
U.S. Pat. No. 8,645,978 on Feb. 4, 2014, the contents of which
are hereby incorporated by reference herein.

This application includes subject matter that may be
related to subject matter included in the following applica-
tions: U.S. patent application Ser. No. 13/224,393 entitled “A
Method And Device For Maintaining Data In A Data Storage
System Comprising A Plurality Of Data Storage Nodes,” filed
Sep. 2,2011, which issued as U.S. Pat. No. 8,650,365 on Feb.
11,2014; U.S. patent application Ser. No. 13/224,404 entitled
“Method And Device For Writing Data In A Data Storage
System Comprising A Plurality Of Data Storage Nodes,” filed
Sep. 2,2011, which issued as U.S. Pat. No. 9,021,053 on Apr.
28,2015; U.S. patent application Ser. No. 13/224,424 entitled
“Method For Handling Requests In A Storage System And A
Storage Node For A Storage System,” filed Sep. 2,2011; U.S.
patent application Ser. No. 13/224,433 entitled “Method For
Data Retrieval From A Distributed Data Storage System,”
filed Sep. 2, 2011, which issued as U.S. Pat. No. 8,769,138 on
Jul. 1, 2014; and U.S. patent application Ser. No. 13/224,446
entitled “Method For Updating Data In A Distributed Data
Storage System,” filed Sep. 2, 2011, which issued as U.S. Pat.
No. 8,997,124 on Mar. 31, 2015.

TECHNICAL FIELD

The present disclosure relates to an apparatus and method
for accessing, writing and deleting data in a data storage
system comprising a plurality of data storage nodes, the meth-
ods may be employed in a server and/or in a storage node in
the data storage system. The disclosure further relates to
storage nodes or servers that may be capable of carrying out
such methods.

BACKGROUND

Such a method is disclosed in US Patent Publication No.
2005/0246393 Al. This method is disclosed for a system that
may use a plurality of storage centers at geographically dis-
parate locations. Distributed object storage managers may be
included to maintain information regarding stored data. One
problem associated with such a system is how to accomplish
simple and yet robust and reliable maintenance of data.

SUMMARY OF THE INVENTION

A method to maintain data in a data storage system com-
prising data storage nodes interconnected by means of a com-
munications network is disclosed. The method may include
sending a request for a first data item to a plurality of storage
nodes. The first data item may include a reference to a second
data item stored in the storage system. The method may also
include receiving the first data item from at least one storage
node, and/or sending a request for the second data item to the
plurality of storage nodes, for example based on the reference
included in the first data item.

In an embodiment, a virtual directory structure may be
implemented in a storage system where the files are stored in
an unstructured manner.

The request for the first and second data entities may be
sent by multicast.

10

15

20

25

30

35

40

45

50

55

60

65

2

For example, by utilizing multicast many storage nodes
may be easily accessed.

The first and second data items may be identified by a first
and second unique key.

In an embodiment, the files in the storage system may be
accessed directly irrespective of their location in the system.

The first and second unique key may include a cluster
address pointing out a subset of said storage nodes within the
system, and/or a data item identifier identifying a data item
within the subset of storage nodes. A reference to a data item
may include the unique key.

In an embodiment, the method may be implemented in
large storage systems, for example a storage system which
include hundreds or thousands of storage nodes.

The method may comprise sending the first and second
request from an application programming interface, API.

For example, by utilizing a common API to access the
storage nodes, the method may be easily implemented on
many different platforms.

The API may be implemented on a server in communica-
tion with the storage nodes.

In an embodiment, the method may be implemented on a
dedicated device provided e.g. by a third party which may not
be responsible for the maintenance of the storage nodes.

The API may be implemented in a storage node.

In an example embodiment, implementing the API in a
storage node may allow the number of access points into the
storage system may be increased.

The method may comprise the API retrieving the unique
key, identifying the second data item, from the received first
data item.

For example, the unique identifier for the second data item
may be easily retrievable if an indication of the unique iden-
tifier is included in the first data item.

The method may comprise receiving the key, identifying
the first data item, in the API.

In an embodiment, one or more directory structures may be
implemented simultaneously.

The second data item may include a reference to third data
item.

For example, in an embodiment directory structures with
multiple levels may be implemented.

The second data item may include payload data, such as an
image.

For example, data files with payload data may be part of the
directory structure (e.g. stored in sub folders).

The first data item may be sent by unicast.

For example, by utilizing unicast, the data item may be
transferred in a bandwidth-effective manner.

According to an embodiment, a method for maintaining
data in a data storage system including data storage nodes
interconnected by means of a communications network may
be implemented in a server and/or a data storage node. The
method may include storing a first data item in at least one
storage node. The method may also include updating a second
data item, stored in at least one storage node. For example, the
second data item may be updated by adding a reference to the
first data item in the second data item. Updating the second
data item may include sending a request to at least one storage
node that stores a copy of the second data item. The request
may instruct and/or request that the at least one storage node
add a reference to the first data item to the second data item.

In an embodiment, new items may easily be added to the
directory structure, for example by adding references to the
new items to other items in the directory structure.

According to an embodiment, a method for maintaining
data may be implemented a server or data storage node

US 9,305,012 B2

3

included in a data storage system. The data storage nodes may
be interconnected by means of a communications network.
The method may include deleting a first data item stored in at
least one storage node. The method may also include updat-
ing a second data item, stored in at least one storage node, by
deleting a reference to the second data item in the second data
item.

In an example embodiment, items in the directory structure
may easily be deleted, for example by deleting references to
the items.

According an embodiment, a data storage system may
include data storage nodes interconnected by means of a
communications network. A server or node may include an
application programming interface, API, and may be config-
ured to send a request for a first data item to a plurality of
storage nodes. The first data item may include a reference to
a second data item stored in the storage system. At least one
storage node may be configured to send the first data item to
the API. The API and/or storage node or sever may be further
configured to send a request for a second data item to the
plurality of storage nodes based on the reference included in
the first data item.

For example, a virtual directory structure may be imple-
mented in a storage system where the files are stored in an
unstructured manner.

Other objectives, features and advantages of the disclosed
embodiments may appear from the following detailed disclo-
sure, from the attached claims as well as from the drawings.

Generally, all terms used in the claims are to be interpreted
according to their ordinary meaning in the technical field,
unless explicitly defined otherwise herein. All references to
“a/an/the [element, device, component, means, step, etc.]”
are to be interpreted openly as referring to at least one
instance of said element, device, component, means, step,
etc., unless explicitly stated otherwise. The steps of any
method disclosed herein do not have to be performed in the
exact order disclosed, unless explicitly stated.

BRIEF DESCRIPTION OF THE DRAWINGS

The above, as well as additional objects, features and
advantages of the disclosed embodiments, may be better
understood through the following illustrative and non-limit-
ing detailed description, with reference to the appended draw-
ings, where the same reference numerals may be used for
similar elements.

FIG. 1 is a schematic view of an example storage system.

FIG. 2 is an example schematic block diagram of a number
of data items stored in the storage system.

FIG. 3 is a schematic block diagram of an example data
item identifier.

FIG. 4 is a schematic block diagram of an example method
for retrieving data.

FIG. 5a-c are illustrations of example communications
between different entities in the storage system.

FIG. 6 is a schematic block diagram of an example method
for storing data.

FIG. 7 is a schematic block diagram of an example method
for deleting data.

DETAILED DESCRIPTION

Detailed embodiments of the disclosed methods and sys-
tems may be described with reference to the drawings. The
present disclosure is related to a distributed data storage sys-

10

15

20

25

30

35

40

45

50

55

60

65

4

tem comprising a plurality of storage nodes. An example
structure of the system and the context in which it may be used
is outlined in FIG. 1.

A user computer 1 may access, for example via the Internet
3, an application 5 running on a server 7. The user context, as
illustrated here, may be therefore a client-server configura-
tion. However, it should be noted that the data storage system
to be disclosed may be useful also in other configurations, for
example utilizing other communication methods.

In the illustrated case, two applications 5, 9 may run on the
server 7. Of course however, any number of applications may
be running on server 7. Each application may have an API
(Application Programming Interface) 11 which may provide
an interface in relation to the distributed data storage system
13 and may support requests, typically write and read
requests, from the applications running on the server. Data
may be read and written to the storage system using the
methods described in detail in U.S. patent application Ser.
No. 13/125,524, filed Apr. 21, 2011, which issued as U.S. Pat.
No. 8,688,630 on Apr. 1, 2014, the contents of which are
hereby incorporated by reference herein. Methods of reading
and writing of data therefore may not be further elaborated
upon in detail herein. From an application’s point of view,
reading or writing information from/to the data storage sys-
tem 13 may appear to be the same as using any other type of
storage solution, for instance a file server or a hard drive.

Each API 11 may communicate with storage nodes 15 in
the data storage system 13, and the storage nodes may com-
municate with each other. Alternatively, or additionally, one
or more of the storage nodes 15 may include an API 23 for
supporting requests as disclosed above. These communica-
tions may be based on TCP (Transmission Control Protocol)
and UDP (User Datagram Protocol). Other communication
protocols may also be utilized.

The components of the distributed data storage system may
be the storage nodes 15 and the APIs 11 in the server 7 which
may access the storage nodes 15. The present disclosure may
be described in relation to methods carried out in the server 7
and in the storage nodes 15. Those methods may be primarily
be embodied as combination software/hardware implemen-
tations which are executed on the server and the storage
nodes, respectively. The operations of the server and/or stor-
age nodes may together determine the operation and the prop-
erties of the overall distributed data storage system.

Although in FIG. 1 the server 7 is illustrated as a member
of the storage system 13 which is separate from the storage
nodes 15 it should be noted that the server 7 may be a storage
node including server functionality.

The storage node 15 may typically be embodied by a file
server which is provided with a number of functional blocks.
The storage node may thus include a storage medium 17,
which for example may include a number of internal (e.g.
connected via Integrated Drive Electronics (IDE), Serial
Advanced Technology Attachment (SATA), and/or the like)
or external hard drives (e.g. connected via Universal Serial
Bus (USB), Firewire, Bluetooth, and/or the like), optionally
configured as a RAID (Redundant Array of Independent
Disk) system. Other types of storage media are however con-
ceivable as well.

Each storage node 15 may contain a node list including the
IP addresses of all storage nodes in its set or group of storage
nodes. The number of storage nodes in a group may vary from
a few to hundreds or thousands of storage nodes.

The storage medium 17 may store one or more data items
19, 21 in the form of collection objects 19 or payload data in
the form of data files 21. A collection object 19 may include
a set of references. A reference may be a reference to one or

US 9,305,012 B2

5

more data files stored in the storage system, e.g. data files 21.
A reference may also be a reference to another collection
object 19 stored in the storage system. A reference may
include a pointer (e.g. amemory address)to a storage location
of'a storage node 15. A reference may include an identifier of
the collection object or data file referred to.

As will be disclosed in more detail below, the collection
object 19 may be used for implementing a structured layer in
the storage system. Data files 21 referenced in the collection
object 19 may in such an implementation represent data files
stored in the structure. Additional collection objects 19 ref-
erenced in the collection object 19 may in such an implemen-
tation represent subdirectories stored in the directory.

A collection object 19 may be embodied as a data object
having a predetermined format. The data object may be a
special file in the file system of the storage medium 17 in the
sense that it may be a binary file to be interpreted by the API.
In an example, the data object may be a standard data file in
the file system of the storage medium 17; the data object may
e.g. be a plain text file indicating the referenced collection
objects 19 and/or data files 21. A data object may be readable
using the same routines of the file system as the data files 21.

FIG. 2 schematically illustrates a collection object 19a
according to one embodiment. The collection object 19a may
have an associated collection object identifier 20a. The iden-
tifier 20a may for instance be a Universally Unique Identifier
(UUID). The collection object identifier 20a may be included
in a header of the collection object 19a. However, the collec-
tion object identifier 20a may be stored in a register main-
tained at the storage node 15, for example rather than being
included in the collection object 19a. In an example, the
UUID and/or the register maintained at storage node 15 may
associate the collection object 19a with the collection object
identifier 20a, e.g. by pointing out the memory address where
the collection object 19« is to be found. Thus, the collection
object 194 may form a first data item which is identified by a
first unique key.

The collection object 194 may include a field 22a with an
identifier 206 of another collection object 195, e.g. in the form
of'a string. The collection object 194 may include a reference
to the collection object 195. The collection object 195 may be
stored on the same storage node as the collection object 19a or
on another storage node than the collection object 19a. The
storage system may use the identifier 205 in the field 22a to
locate and access the collection object 195. Thus, the collec-
tion object 196 may form a second data item which is iden-
tified by a second unique key.

In one embodiment, in order to implement large storage
systems spanning over multiple networks, the data item iden-
tifiers 20a-d may include two data elements. With reference
to FIG. 3, the first data element 30 may be a cluster ID 31 that
may identify the cluster where the data item (collection object
19a-c or data file 21a) is located. The cluster address may be
a multicast address 32. The multicast address 32 may be
utilized by the API to send a request for a data item to a
specific cluster. The second data element 33 may be a data
item ID 34 formed by a unique number 35 that identifies the
data item 194a-d inside the cluster. The unique number 35 may
be a number of with a defined length, e.g. 128 bits, or the
length may vary. The unique number 35 may include a large
number of bits, enabling a large number of data items to be
uniquely identified within the cluster. By this arrangement a
collection element in one cluster may reference another col-
lection element or data file in another cluster. In other words,
the first and second unique key may include a cluster address

25

40

45

55

6

pointing out a subset of the storage nodes within the system,
and a data item identifier identifying a data item within the
subset of storage nodes.

Referring back to FIGS. 1 and 2, the server 7 may for
example include a register indicating a storage node 15 stor-
ing the collection object (e.g. collection object 19a) associ-
ated with a specific identifier (e.g. identifier 20a). In another
example, the collection object 19a may be located using the
read method disclosed in U.S. patent application Ser. No.
13/125,524. Briefly, according to this read method the server
7 or a storage node 15 may send a multicast message to the
plurality of storage nodes 15. The multicast message may
include the identifier 20a of the desired collection object 19a.
Each storage node 15, in response to receiving the multicast
message, may scan its storage medium 17 for a collection
object having said identifier. If found, the storage node 15
may respond and indicate that it stores the object sought-after
to the originator of the multicast message. The collection
object 19a may then be accessed by means of a unicast
request sent to a responding storage node 15 storing the
collection object 19a.

According to the present embodiment, multicast commu-
nication may be used to communicate simultaneously with a
plurality of storage nodes. By a multicast or IP multicast is
here meant a point-to-multipoint communication which may
be accomplished by sending a message to an IP address which
may be reserved for multicast applications. For example, a
message, for example a request, may be sent to such an IP
address (e.g. 244.0.0.1), and a number of recipient servers
may be registered as subscribers to that IP address. Each of
the recipient servers may have its own IP address. When a
switch in the network receives the message directed to
244.0.0.1, the switch may forward the message to the IP
addresses of each server registered as a subscriber.

In principle, a single server may be registered as a sub-
scriber to a multicast address, in which case a point-to-point,
communication may be achieved. However, in the context of
this disclosure, such a communication may nevertheless be
considered a multicast communication since a multicast
scheme is employed.

According to the present embodiment, unicast communi-
cation may refer to a communication with a single recipient.
A unicast communication may be initiated by a party of the
network and may be directed to a single specific recipient.

In addition to the collection object 194, the collection
object 195 may include a field 225 with an identifier 20c of a
third collection object 19¢. The collection object 19¢ may
include a field 22¢ with an identifier 204 of a data file 21a. In
other words, anyone of the collection objects 19a-c¢ (or, for
example, each of the collection objects 19a-c¢) may represent
a second data item including a reference to third data item,
and the data file 21a may represent a second data item includ-
ing payload data, for example an image.

By appointing the collection object 194 as a root collection
object, the collection object 194 may represent a root direc-
tory 19a of the storage system. Analogously the collection
object 195 may represent a subdirectory 1956 of the root direc-
tory 19a. The collection object 19¢ may represent a subdirec-
tory of the subdirectory 195. The data file 21a may represent
a data file stored in the subdirectory 19¢. The collection
objects 19a-c may thus define a hierarchical storage structure.
The structure may be referred to as a directory tree.

With reference to FIGS. 4 and 5a-c, a method for parsing a
directory structure in order to access a file 19, 21 stored in a
storage node 15 may be disclosed.

The starting point of the directory structure may be a pre-
defined root key. For example, any of the storage nodes 15

US 9,305,012 B2

7

may include a root key. This key may be stored outside of the
storage cluster and may be used to identify the first data item
(e.g. collection object 194a) in the directory structure. A stor-
age cluster may have multiple root keys that enable the user to
have multiple individual directory structures stored within the
same storage cluster. The directory structures may span over
several storage clusters. The root key may be stored together
with external information describing the directory structure
stored within the cluster.

In block 40, the server 7 may receive the root key, which
may identify the first data item 19, 21 and may pass the unique
identifier to identify the file within the storage system to the
API 11. In an example, the API 23 may be implemented in a
storage node 15, wherein the root key may be received in the
storage node 15 rather than in the server 7.

In block 41, the API 11 in the server 7 may multicast a
request for the data item (e.g. the collection object 194) iden-
tified by the root key to storage nodes 15a-¢ in the storage
system, or to a subset of the nodes. For example, the multicast
message may be sent to a specific cluster, for example using
the data item identifier configuration disclosed in relation to
FIG. 3. According to one embodiment the data item (e.g. the
collection object 19a) identified by the root key may be a
special data item in the sense that it may include additional
metadata which may be used by the system. Examples of such
data may be information regarding access permissions to the
items in the directory structure, information where to store
certain data items (e.g. on a storage node with quick access
such as an Solid State Drive (SSD)), and the like.

In block 42, storage node 15a-¢, in response to receiving
the multicast message, may scan their respective storage
mediums 17 in an attempt to locate the data item identified by
the data item ID 34 in the root key.

For purposes of illustration, it may be assumed in this
example that nodes 156 and 15¢ locate the data item identified
by the data item ID 34. In block 43, the nodes 155, 15¢ that
find the data item may reply with information about what
other nodes 155, 15d, 15¢ may contain the data item and the
current execution load (e.g. how busy the nodes are, how
many request the nodes received, how much free space is on
the node, etc.) in the node 155, 15¢. The requested data item
may be stored in a plurality of storage nodes 155, 15d, 15e,
wherein the API may collect the information received from
the nodes 1556, 15d, 15¢ and may wait until it has received
answers from more than 50% of'the listed storage nodes 155,
15d, 15¢ that contains the data item before it may make a
decision on which one to select for the retrieval of the data
item. The decision may be based on which node that has the
lowest execution load.

In block 44 the API 11 may send a unicast request for the
specific file to the chosen storage node. In this example, for
purposes of illustration it may be assumed store node 1556 is
chosen. API 11 may retrieve the data item from the storage
node 156. The API 11 may maintain a list of all storage nodes
154, 15d, 15¢ that store copies of the file in the event of a read
or communication failure with the selected node 155. If an
error occurs the API 11 may transparently select the next best
node in the list and continues the read operation.

In block 45 the API may interpret the content of the
retrieved data item. If the directory structure comprises addi-
tional levels the retrieved data item may be a collection object
1954. If so, the API 11 may read the field 225 which may
include an identifier 205 referring to another collection object
19¢ in the directory structure. For example, the API may
retrieve the unique key, i.e. the identifier 205, identifying the
second data item, e.g. the collection object 195, from the
received first data item, e.g. the collection object 19a. The

10

15

20

25

30

35

40

45

50

55

60

65

8

process may then return to block 41 and may continue parsing
the directory structure. Thus, both the first and second request
may be sent from an application programming interface, API.
The process may continue until the last object in the directory
structure has been identified and retrieved, e.g. the data file
21a whereupon the process may end at 46. In another
example, the API 11 may send an update request to the iden-
tified object, e.g. acommand to alter or concatenate data in the
data item corresponding to the object in the directory struc-
ture.

As an example, it may be that the data file 21 is located in
the root of the directory structure. In such a case the process
may be looped a single time, since the first retrieved collec-
tion object 194 may contain a reference to the data file 21a. It
is emphasized that the retrieved collection object in addition
to including the reference to the data file 21a may also include
references to other data items, such as collection object 195.

Thus, according to the above, a method may implemented
in a data storage system including data storage nodes inter-
connected by means of a communications network for
accessing file. The method may include sending a request for
a first data item 19, 21, (e.g. collection object 194), to a
plurality of storage nodes 15a-e. The first data item may
include a reference to a second data item (e.g. data file 21a or
collection object 195), stored in the storage system. The
method may include receiving the first data item from at least
one storage node 155, and sending a request for the second
data item to the plurality of storage nodes 15a-¢ based on the
reference included in the first data item.

As an illustrative example, with reference to FIG. 2, the
API may recursively read and interpret referenced envelopes
to resolve a path in a directory structure. For example, the API
may identify an unstructured key that represents a file in the
structured path. For example, a user accessing the storage
system may want to resolve the path: “/Documents/
Sample_Pictures/Blue_Hills.jpg”.

In FIG. 2, collection object 19a may represent the root key
“I” (identified by the unique key 20q) and the identifier 22a
may include a reference to collection object 195 representing
the folder “Documents/” (identified by the unique key 205).
The identifier 225 in the collection object 195 may include a
reference to collection object 19¢ representing the folder
“Sample_Pictures/”. Finally, the identifier 22¢ in the collec-
tion object 19¢ may include a reference to the data file 21a
comprising the payload data for the file “Blue_Hills.jpg”.
Thus, by recursively reading the references in the collection
objects a virtual file structure may be created in an unstruc-
tured storage system.

With reference to FIGS. 6 and 5a-c, a method for parsing a
directory structure in order to create a file 19, 21 in a storage
node 15 is disclosed.

similarly to the system discloses in FIG. 4, the starting
point of the directory structure is a predefined root key. The
root key may be an arbitrary key, and there may be many root
keys throughout the system. This key may be stored outside of
the storage cluster and may be used to identify the first data
item (e.g. collection object 19a) in the directory structure.

In block 60, the server 7 may receive the root key, and may
pass the unique identifier to identify the file within the storage
system to the APIL.

Inblock 61, the API 11 may resolve the path to the desired
data item according to the method above.

In block 63, the API 11 in the server 7 may multicast a
request for storing the data item (e.g. the collection object
19¢) including the identifier to all storage nodes 15a-¢ in the
storage system, or to a subset of the nodes, e.g. within a

US 9,305,012 B2

9

specific cluster, for example using the data item identifier
configuration disclosed in relation to FIG. 3.

In block 63, storage nodes 15a-e, in response to receiving
the multicast message, may verify that the data item 1D 34 is
not already in use.

In block 64, a storage node which 15a-¢ that fails to find an
existing file with that specific identifier may reply with an
acknowledgment that may indicate: free storage space on the
storage node, an indication of the age of the hardware that the
storage node is running on, current CPU load and/or the
geographical position of the storage node 15a-¢ in the form of
latitude, longitude and altitude or the like.

Inblock 65 the API 11 may select three storage nodes (e.g.
storage nodes 154, 156 and 15¢) based on the data returned
from storage nodes that responded to the multicast request.
When the three most suitable nodes have been selected the
API 11 may send a request to the three nodes simultaneously
to store the data item. If an error occurs during the transfer of
the data item to one of the selected nodes 154, 155, 15¢, the
operation continues, for example as long as more than 50% of
the selected nodes are operational.

In block 66 the identifier field 225 in the data item one level
higher up in the directory structure (e.g. the first data item—
the collection object 195) may be updated with a reference to
the stored data item (e.g. the collection object 19¢), either by
retrieving the first data item according to the read method
according to the above or by accessing the first data item
directly, for example if the server has cached the identifier of
the first data item.

In order to increase the data integrity in the system the
method above may be supplemented with the act of, prior to
storing the data item, retrieving the first data item in case the
communication with all storage nodes should be lost after the
data item has been stored but before the first data item is
updated. By this procedure the API may resume the update
procedure once the communication with the storage nodes is
resumed.

Thus, according to the above, a method may be imple-
mented in various devices within a data storage system
including data storage nodes interconnected by means of a
communications network. The method may include storing a
first data item in at least one storage node, and updating a
second data item, stored in at least one storage node, by
adding a reference to the first data item in the second data
item.

With reference to FIGS. 7 and 5a-c, a method for parsing a
directory structure in order to delete a file 19, 21 in a storage
node 15 is disclosed.

In similarity to the disclosure in relation to FIG. 4, the
starting point of the directory structure may be a predefined
but arbitrary root key. This key may be stored outside of the
storage cluster and may be used to identify the first data item
(e.g. collection object 19a) in the directory structure.

In block 70, the server 7 may receive the root key and may
pass the unique identifier to identify the file within the storage
system to the APIL.

Inblock 71, the API 11 may resolve the path to the desired
data item according to the method above.

In block 72, the API 11 in the server 7 may multicast a
query regarding the location of the data item (e.g. the collec-
tion object 19¢) including the identifier to storage nodes
15a-e in the storage system, or to a subset of the nodes, e.g.
within a specific cluster, for example using the data item
identifier configuration disclosed in relation to FIG. 3.

10

15

20

25

30

35

40

45

50

55

60

65

10

In block 73, storage nodes 15a-¢, in response to receiving
the multicast message, may scan their respective storage
medium 17 to locate data item identified by the data item ID
34.

In block 74, the nodes that locate the data item may reply
with information regarding other nodes that may store the
data item and the current execution load in the node. The
requested data item may be stored in a plurality of storage
nodes. The API may collect the information received from the
nodes and may wait until it has received answers from more
than 50% of the listed storage nodes that contains the data
item before making a decision on which nodes to select for the
deletion of the data item.

Inblock 75 the API 11 may send a unicast request to delete
the specific file (e.g. the collection object 19¢) to the chosen
storage nodes.

In block 76 the identifier field 225 in a data item one level
higher in the directory structure (e.g. the collection object
195) may be updated by deleting the reference to the deleted
data item (e.g. the collection object 19¢). The update may
occur by retrieving the first data item according to the read
method described above and/or by accessing the first data
item directly, for example if the server cached the identifier of
the first data item. In the case where the data item to be deleted
is located a number of levels down in the directory structure,
the delete operation may be expressed as the method dis-
closed in relation to FI1G. 4 with the addition of 1) deleting the
first data item, and ii) updating the second data item by
deleting the reference to the first data item.

Thus, a data deletion method may be implemented in a data
storage system including data storage nodes interconnected
by means of a communications network. The method may
include deleting a first data item stored in at least one storage
node. The method may also include updating a second data
item, stored in at least one storage node, by deleting a refer-
ence to the first data item in the second data item.

The collection objects 19 may be handle and maintained in
manner similar to data files. This may allow the data to be
stored in a flat storage structure, e.g. without any subdirecto-
ries or within a single directory. A virtual hierarchical storage
structure may be created by adding collection objects 19
including references to other collection objects 19 and/or data
files 21. It even allows the same data to be organized in several
different virtual hierarchical storage structures by using dif-
ferent sets of collection objects 19.

For data security reasons, some or all information stored in
the storage system (e.g. the collection objects 19 and/or the
data files 21) may be stored redundantly in the storage system.
The collection objects 19a-c¢ and the data file 21a may be
stored at two or more storage nodes 15. Each instance of a
collection object or data file may be associated with the same
identifier. In such a case, the above-described read method
may result in a response from each storage node storing the
collection object. A redundantly stored collection object may
thus be retrieved from either one of or all of the storage nodes
storing the collection object.

Several embodiments which demonstrate the disclosed
method and system have been described. However, as is
readily appreciated by a person skilled in the art, other
embodiments in addition to the ones disclosed above are
equally possible that are in accordance with the methods and
products described herein. The foregoing examples are not
meant to be limiting, and the scope of the protection is to be
defined by the appended patent claims.

US 9,305,012 B2

11
What is claimed:
1. A method for implementing a distributed directory struc-
ture in a data storage system, the method comprising:
identifying a first data item in a data storage system,
wherein the first data item comprises a first collection
object, the first collection object comprises one or more
references to one or more other data items in the data
storage system, the one or more references comprise a
reference to a second data item stored in the data storage
system, and the first collection object corresponds to a
first subdirectory in a distributed directory system;

determining a first multicast address to use for requesting
the first collection object;
sending a first request for the first collection object using
the first multicast address, the first request including a
unique identifier for the first collection object;

receiving at least one copy of the first collection object
based on sending the first request using the first multi-
cast address;

determining a second multicast address used to request the

second data item in a cluster of the data storage system,
wherein the reference to the second data item included in
the first collection object comprises the second multicast
address, the second data item comprises a second col-
lection object, the second collection object corresponds
to a second subdirectory, and the first subdirectory is a
parent directory of the second subdirectory;

sending a second request for the second data item to the

second multicast address included in the reference to the
second data item included in the first collection object;
and

receiving the second data item via a unicast message based

on the second request.

2. The method as in claim 1, wherein multiple copies of the
second data item are received based on the second request,
each of the multiple copies being received from a different
data storage node of the cluster.

3. The method as in claim 1, wherein the first data item and
the second data item are stored in different clusters of data
storage nodes.

4. The method as in claim 1, wherein the second collection
object comprises at least one reference to at least one other
data item in the data storage system, and the at least one
reference comprises a reference to a third data item stored in
the data storage system.

5. The method as in claim 4, wherein each of the first data
item, the second data item, and the third data item are stored
on different data storage nodes in the data storage system.

6. The method as in claim 1, wherein a collection object is
a type of file utilized to implement the distributed directory
structure.

7. The method as in claim 6, wherein collection objects in
the data storage system each comprise at least one of a refer-
ence to another collection object or a reference to a data file.

8. The method as in claim 7, wherein the collection objects
in the data storage system each represent a folder or subfolder
of the distributed directory structure.

9. The method as in claim 1, wherein the first collection
object also includes a reference to a data file, and the data file
comprises payload data.

10. A method for locating a data file within a distributed
directory system, the method comprising:

determining a path for accessing a first data item, wherein

the first data item comprises a data file, the path for
accessing the first data item includes one or more sub-
directories, and each of the one or more subdirectories is

5

10

15

20

25

30

35

40

45

50

55

60

12

represented in the distributed directory system using a
corresponding collection object;
determining a first multicast address to use for requesting a
first collection object that represents a first subdirectory
in the path;
sending a first request for the first collection object using
the first multicast address, the first request including a
unique identifier for the first collection object;
receiving at least one copy of the first collection object
based on sending the first request using the first multi-
cast address, wherein the first collection object com-
prises a second multicast address for a second collection
object representing a second subdirectory, the first sub-
directory being a parent directory of the second subdi-
rectory;
sending a second request for the second object using the
second multicast address, wherein sending multicast
requests for subsequent collection objects representing
further subdirectories are continued until at least a sub-
directory that includes the first data items is located; and
receiving the first data item via a unicast message.
11. The method as in claim 10, wherein a copy of each
collection object is stored on multiple data storage nodes.
12. The method as in claim 11, further comprising deter-
mining which copy of a identified collection object is to be
requested based at least in part on load information for the
data storage nodes that store the identified collection object.
13. The method as in claim 10, further comprising using a
root key to identify a collection object representing a root
directory for the path, and requesting the collection object
representing the root directory based on the root key.
14. A server implemented at least in part using hardware,
the server comprising a processor configured to:
identify a first data item in a data storage system, wherein
the first data item comprises a first collection object, the
first collection object comprises one or more references
to one or more other data items in the data storage
system, the one or more references comprise a reference
to a second data item stored in the data storage system,
and the first collection object corresponds to a first sub-
directory in a distributed directory system;
determine a first multicast address to use for requesting the
first collection object;
send a first request for the first collection object using the
first multicast address, the first request including a
unique identifier for the first collection object;
receive at least one copy of the first collection object based
on sending the first request using the first multicast
address;
determine a second multicast address used to request the
second data item in a cluster of the data storage system,
wherein the reference to the second data item included in
the first collection object comprises the second multicast
address, the second data item comprises a second col-
lection object, the second collection object corresponds
to a second subdirectory, and the first subdirectory is a
parent directory of the second subdirectory;
send a second request for the second data item to the second
multicast address included in the reference to the second
data item included in the first collection object; and
receive the second data item via a unicast message based on
the second request.
15. A data storage node comprising a processor configured
to:
identify a first data item in a data storage system, wherein
the first data item comprises a first collection object, the
first collection object comprises one or more references

US 9,305,012 B2

13

to one or more other data items in the data storage
system, the one or more references comprise a reference
to a second data item stored in the data storage system,
and the first collection object corresponds to a first sub-
directory in a distributed directory system;

determine a first multicast address to use for requesting the
first collection object;

send a first request for the first collection object using the
first multicast address, the first request including a
unique identifier for the first collection object;

receive at least one copy of the first collection object based
on sending the first request using the first multicast
address;

determine a second multicast address used to request the
second data item in a cluster of the data storage system,
wherein the reference to the second data item included in
the first collection object comprises the second multicast
address, the second data item comprises a second col-
lection object, the second collection object corresponds
to a second subdirectory, and the first subdirectory is a
parent directory of the second subdirectory;

10

15

20

14

send a second request for the second data item to the second
multicast address included in the reference to the second
data item included in the first collection object; and

receive the second data item via a unicast message based on
the second request.

16. The data storage node as in claim 15, wherein the
processor is configured to add a new data file to the second
subdirectory corresponding to the second collection object by
adding a reference to the new data file to the second collection
object.

17. The data storage node as in claim 15, wherein the
processor is configured to add a new subdirectory to the first
subdirectory corresponding to the first collection object by
adding a reference to a third collection object to the first
collection object, the third collection object corresponding to
the new subdirectory.

18. The data storage node as in claim 15, wherein the
processor is configured to delete the second subdirectory
corresponding to the second collection object by removing
the reference to the second collection object from the first
collection object.

